1、“不知道这些数据怎么用”是一个普遍的问题,这家企业也只是许多中国企业运用数据现状的一个缩影而已,不止中国,在全球都是这样。IDC的报告显示:2012年,全球数据供应量达到了 2.8 泽字节(ZB),即 2800 万亿GB,但是其中仅有0.5%被用于分析。很多企业已经意识到需要从粗放经营转型到精细化运营。

4、那么,企业该如何利用数据驱动业务增长呢?首先需要从以下四个方面入手,这些都是企业需要解决的数据问题。
5、一、数据来源整合们讲数据分析,数据从哪里来?可能来源于网站、来源于系统、来源于一些线下excel表格。那么这些数据的管理需要注意哪些方面呢?1、数据源的广度比如说,服装业企业客户,分析成交单数、客单价,成交单数是进店人数乘以成交率,进店人数呢又是路过人数乘以进店率,那么路过人数、进店人数就属于数据广度这一块儿,数据足够全面,未来支撑分析的维度就会更多。2、数据源的深度比如看某个订单的时候,需要知道时间、地点、价格、款式等。数据源整体数据质量如果不够的话,未来是不足以支撑细化的数据分析的。我们做的第一件事情就是把所有数据全部收集起来,并实现“一键接入,随需更新”,提升数据源的广度和深度。需要对数据源的质量进行一个管理,要保障数据需要足够广、足够深;数据需要整合到一个统一的管理平台上。例如企业在开会,当销售出现问题的时候,A部门拿出一个销售数据,B部门拿出一个销售数据,但是对不上号,来回推诿扯皮,无法解决问题,这样对于企业的发展是非常不利的。这个问题我们认为需要企业把数据管理起来,例如,我们在设立数据指标框架的时候,要定义的核心指标是什么?是成本、利润还是营收?以营收为例,又拆分成客户数和客单价等等,这些数据分别来源于哪些数据源、哪些系统?系统数据录入人员,录入是否规范?我们对数据指标的定义是否一致?所以需要我们整体从数据管理的角度,定义出一致的指标,将数据治理做好,然后在统一的平台上统一输出数据,这样确保了统一的数据口径。

8、BDP商业数据平台上亿级数据计算时间是0.28秒;我们线上有超过60万个数据模型,从数据源变化到模型计算完成的平均时间是24秒等等;这些性能数据足以保障用户在前端体验到的是一个快速、反应灵活的分析平台。
9、四、数据可视化未来,数据分析会往业务部门做一个迁移,因为只有业务人员才最懂业务,才能最大发挥数据的价值。但是通过大量的表格,一般业务人员很难从中快速发现一些业务问题。所以,数据也会从数据表格的形式向图形化转变。毕竟,人类对图形的接收处理的速度远高于数字,以下的可视化图表来自BDP个人版~

10、如果可视化探索分析要真正地应用到业务人员当中,需要具备以下特征:1)易用:数据分析平台要降低门槛,前提就是易用。
11、2)灵活:尤其是互联网企业,业务发展变化非常快,今天要分析A数据,明天要分析B数据,后天要换一个维度去分析A和B的数据。如果是传统平台,有限的资源、有限的研发人员永远无法满足无穷无尽的改变,无法满足业务的需求也意味着无法快速的去响应市场,使得企业运营的效率会降低,竞争优势会慢慢丧失。所以这个数据分析一定要灵活、快速,以支撑业务的变化。
12、3)高效:随着物联网、互联网发展,数据量越来越膨胀。当数据量达到一定的体量的时候,比如说1亿条数据,如果要做一个分析,到底多长时间能够反馈出一个结果?在很多企业当中,性能已经成为了数据分析的短板。比如,我们的一个零售客户,之前分析一个数据,需要6个小时,运用了BDP商业数据平台后,2到3分钟即可得出结果,大大缩短了分析过程,大幅提高了企业的运营效率和经营绩效。试想一下,你分析过程6个小时,你的对手只需要5分钟,日积月累下来,差距可想而知。